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Abstract-An analysis of the effects of vapor pressure variation on the vapor temperature distribution, 
evaporation and condensation rates, and the overall heat pipe performance is presented The elliptic mass, 
momentum and energy conservation equations in conjunction with the thermodynamic equilibrium 
relation and appropriate boundary conditions are solved numerically for a cylindrical heat pipe with 
evaporator, adiabatic and condenser sections. The results show that in certain situations vapor pressure 
variations play a significant role in the heat pipe performance. It is also demonstrated that the approximate 
solution based on the parabolic boundary-layer equations does not provide an accurate picture of vapor 

pressure variations at relatively high evaporation and condensation rates. 

NOMENCLATURE 
specific heat at constant pressure; 
enthalpy, cPT; 
heat of vaporization; 
overall heat transfer coefficient; 
length of the heat pipe, 
pressure; 
perimeter; 
overall heat transfer rate through the heat 

pipe; 
radial distance; 
vapor space radius; 
radial Reynolds number, pr,v,/p; 

temperature; 
initial operating vapor temperature; 
axial velocity; 
radial velocity; 
evaporation or condensation velocity; 
axial distance; 
thermal exchange coefficent ; 
viscosity; 
density; 
stream function; 
vorticity. 

Subscripts 

a, ambient ; 
c, condenser; 
e, evaporator; 
s, value on the boundary. 

1. INTRODUCTION 
ALONG the vapor-liquid interface inside a heat pipe 
the vapor temperature is related to the pressure 

according to the equlibrium temperature-pressure 
relation. Therefore, a large pressure drop in the vapor- 
flow direction may result in a significant temperature 
drop along the interface, thus affecting the overall 
heat pipe performance. The pressure-drop effect 
becomes more pronounced in a long heat pipe or in 
cases where the operating vapor pressure is relatively 
small, such as in liquid metal heat pipes. There have 
been several recent investigations [l-4] to analyse 
the effects of vapor flow, particularly the effect of 
pressure variations, on the overall heat pipe per- 
formance. These analyses were all based on mass 
and momentum conservation equations and thus 
neglected the complex coupling with the energy 
equation and the thermodynamic equilibrium rela- 
tion. Moreover, the boundary-layer approximation 
was often employed [l, 2,4] in a problem clearly of 
elliptic type, and the validity of this approximation in 
the case with appreciable vapor pressure drop has not 
been assessed. 

In the present paper the effects of vapor pressure 
variation on the axial temperature distribution, 
evaporation and condensation rates, and the overall 
heat pipe performance are investigated analytically. 
The theoretical framework is based on the elliptic 
mass, momentum and energy conservation equations 
as well as the thermodynamic equilibrium relations. 
Results are obtained numerically for a cylindrical 
heat pipe with evaporator, adiabatic, and condenser 
sections. Several cases of heat pipe operation with 
significant vapor pressure drop are considered. The 
present findings are in general agreement with the 
temperature measurements of Busse [4] on a liquid 
metal heat pipe, and with the earlier approximate 
calculations. The effects of radial pressure drop are 
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also mdicated by comparing with the boundary layer 
calculations in which the radial pressure gradient is 
ncr2lected. 

where all symbols are defined in Komenciatur~. t,cii 
given values of He, Tue. H, and T,,. I,,(xI must assunx 
such an expression that the above integral conservo 
lion relation as well as the followmg d~ffer~nt.~~~~ 
conservation equations are Mivficd 

The physical model under consideration is J 

cylindrical heat pipe with evaporator. adiabatic and 
condenser sections. operating under the following 
assumptions: 

I. ‘The steady flow of vapx is laminar and sub- 
sonic. 

For the numerical method of anaiysls j ‘lj employed 
in the study. it 1s more convenient to express the mass,. 
momentum and energy ~~~nservi~~i{~r~ equations 112 
ierms of stream function, \-itrticity 2nd ttnihalpy. 

2. The vapor has constant transport properties 
and its density variations follow the prefect-gas law. 

3. At the vapor-liquid interface, the vapor is at its 
equilibrium temperature corresponding to its pres- 
sure. Elsewhere it is either superheated or subcooled 
depending on the local temperature and pressure. 
Evaporation and condensation take place only at the 
\ apor-liquid interface. 

4. The evaporator and condenser are surrounded 
by constant but different ambient temperatures and 
are associated with uniform overall heat transfer 
coefficients between the vapor-liquid interface and 
the ambient. This assumption will have a magnifying 
effect in demonstrating the effects of axial pressure 
variations and consequent temperature distribution 
along the vapor-liquid interface on the heat pipe 
performance. In actual situations. the heat transfer 
coefficient between the heat pipe and its ambient is a 
complex function of the ambient and heat pipe wall 
temperature, the dominant mode of heat transfer and 
the material of the heat pipe wall and liquid wick 
matrix as well as other parameters. 

where 

5. The effects of axial heat conduction through rite 
pipe wail and liquid wick matrix as well as the liquid 
pressure drop in the wick are negligible. This assump- 
tion is rather restrictive for many heat pipes [S] and 
i\ imposed here primarily for the purpose of focusing 
our attention on the complex transport phenomena 
in the vapor region. The present numerical framework. 
however, could incorporate these effects [S] in a 
more extensive computational study. 

Boundary ~~~ll~~it~[~ns for the above equarions arl: 

specified in accordance with the reyuircmcnt:~ for thi, 
boundary conditions of the elliptic differential equa- 
tions. For heat pipe vapor space. in order to determine 

the stream function, vorticity and temperature bound- 
ary conditions, pressure distribution in the system 
must be first prescribed. Initially. 3 uniform pressutc 
1s selected by assuming the vapor at 21 constant 
temperature ?;; calculated from e~u;~ti~~ 1 i 1 

‘The heat pipe I, a closed system such that at steady 
state the mass of the vapor generated and the energq 
transferred into the system in the evaporator section 
must be equal to the mass of the vapor condensed and 
the energy rejected out of the condenser section. 
respectively. The energy encl:lsare condition gives 

Q = i’, ~,Pl?,, - To(x)1 dx = $‘ H<P[T,(x) 

- T,J dx (1) 

based on the vapor.-~~quld ~qul~lbrlu~l relation. I‘he 
magnitude of pressure is adjusted during the cat- 
culation procedure by a SLILCW\~Y;’ ~i)!,~.“uirnaric;~: 
procedure I~I such ,\ ~\a? thal tilt ,.J ~ii:m ;IILQ>L~S 

satisfies the energy balance relation 

Once a value of the pressure inside rhc heat pipe IS 
designated. the temperature boun~iar~ condition ori 
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the pipe wall is obtained from the vapor-liquid 
equilibrium relation 

T= T(P) (7) 

where the complicated T-p relationship will be 
approximated with a linear relation at points close 
to the operating pressure of the system. The minor 
deviations in temperature values due to this approxi- 
mation nould have a minimal effect on the outcome 
of the analysis. Other boundary conditions are at the 
insulated heat pipe flat ends: 

aT 

22 x=o,L= 
0 (8) 

and at the pipe centerline 

aT 

ar r=O= 
0. (9) 

The velocity components u and v at the boundary 
must satisfy: 

~(0, r) = v(L, r) = v(x, 0) = 0, 

~(0, r) = u(L, r) = u(x, rJ = 0, 
au 
5 ,= i (10) 

The evaporation and condensation velocity, vo, is 
determined by writing the energy balance relation for 
an axial element of the vapor-liquid interface and by 

v,,(re,x) = 
[ 

H(T,(x) - TJ + kz I 1 lbq. (11) 
w 

The stream function, I/I, on the boundary is deter- 
mined by integrating equations (5), 

MI, r) = $(L, r) = ti(x, 0) = 0 

$(x, r,,) = - a peer, dx. 
(12) 

Vorticity boundary conditions at the vapor- 
liquid interface and on the heat pipe flat ends are 
calculated by assuming that the vorticity is uniform 
close to the boundary [3,6] 

co* = - 
w, - @,I 

tn1p 
(13) 

and a relation based on the assumption that vorticity 
variations close to centerline are parabolic was used 
for determination of o/r on the pipe axis. 

3. SOLUTION PROCEDURE 

Basically, the finite difference iterative method of 
solution with the upwind method of differencing of 
Gosman et al. [6] was employed in the present 
analysis. In brief, the field under study is divided into 

M rows and N columns, and row and column numbers 
are assigned to the nodes of the grid that is formed. 
Then, the three conservation equations are written 
in algebraic difference form by using the upwind 
method. Three sets of MN difference equations in the 
general form of 

4i,jrci+l,j4i+l,j + ci-l,j~i-l,j+ ‘i,j+*di,j+l 

+ ‘i,j-l$i,j-* + Dij (14) 

are obtained for the three differential conservation 
equations, The Gauss-Seidel point iterative method 
is used to solve the 3 MN algebraic equation. 

The solution procedure for the simple heat pipe 
system is in the following order: 

1. Zero initial values of stream function and 
vorticity are assumed for nodes inside the grid. Vapor 
temperature is assumed constant and equal to To 
from equation (6) at all nodes of the grid. 

2. Velocity and stream function boundary condi- 
tions are determined from equations (lOH12), and 
the set of difference equations for stream function is 
solved. 

3. With the new stream function values, vorticity 
boundary conditions are determined, and the set of 
difference equations for vorticity is solved. 

4. From the new stream function values, velocity 
components are calculated from equation (4) for 
nodes inside the grid. By knowing the velocity field, 
the pressure distribution along the vapor-liquid 
interface is determined by integration of the momen- 
tum equation (6). Pressure at the liquid-vapor inter- 
face at the end of evaporator section, pO, is taken as 
the datum pressure and does not change. With the 
new pressure distribution, the temperature boundary 
condition is determined from equations (7H9), and 
the set of difference equations for temperature is 
solved. 

5. Steps 2-4 are repeated, and in each subcycle of 
iteration the maximum value of R,, as defined below, 
is calculated 

4 
N+l 

R@= l-T. 
4 

(15) 

The procedure is terminated when R, becomes less 
than a small preassigned value (here taken as @OOl) 
for all the dependent variables o, ti and h. 

The initial uniform distribution of T,(x) is modified 
in the course of calculation. In order to satisfy the 
energy enclosure relation, equation (I), the average 
value of temperature at the vapor-liquid interface 
defined as 
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must be equal to 7; from equation (6). This is made limiting Reynolds number was taken as 2100 while 
possible by calculating the pressure p,, related to 2; occasionally laminar flows of much highe: Reynolds 
from equation (7). Subtracting this pressure from the numbers are encountered. Table 1 gives the primary 
datum pressure pi and adding the results of subtrac- information on these cases. A 61 x 10 grid was used 
tion to pt would constitute the new datum pressure for obtaining the results of the above-mentioned 
p:' ‘. In the course of obtaining the results this cases. The computer time spent on CDC 6400 was 
adjustment was made only after every N steps oi about 2min for each case, and the density and pres- 
iteration. Also, the vapor density variation is taken sure correction was made after every 10 steps of 
into consideration in this sequence. Iteration 

4. RESULTS AND DISCUSSION 

A cylindrical heat pipe with sodium as working 
fluid was selected for the analysis. The pipe dimen- 

sions were chosen close to the dimensions of an 
experimental heat pipe operating in Berkeley (i.e. 

L = 0.6m, Le = 0.2m, Lc = 0.3m and r = 0.0086m). 
The range of heat pipe operating temperature that 
was studied is such that while the operating pressure 
inside the system is low, the pressure drop along the 

pipe is relatively large. The heat pipe evaporator and 
condenser ambient temperatures and overall heat 

transfer coefficients were assumed constant. Thus. by 

In presentmg the results. flow aspects of the 
problem have been omitted because of its similarity 
to the results reported by Bankston and Smith [3]. 

Figure 2 demonstrates the vapor pressure drop along 
the heat pipe vapor-liquid interface for the Runs No. 
! 5 in Table I The pressure drop profile in the adia- 
bat~c scctton 15 a straight hne similar to I’c~~~uille 

flow results, while profiles in the evaporator and 
condenser sections demonstrate the effects of the 

pressure head absorbed or created by evaporation 
or condensation. The overall pressure drop along the 
heat pipe in all cases is very close to predictions of 
Busse [l] and Cotter [2] for low evaporation and 
condensation rates on the basis of Poiseuille flow 
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FIG. 1. Schematic diagram of the heal pipe. 

neglecting the vapor temperature variations due to 
its pressure drop, evaporation and condensation 
rates must be uniform. Five cases of heat pipe opera- 

tion with various evaporation and condensation 
rates were studied. This range was selected in such a 
way that the maximum vapor Reynolds number. 

based on the average axial velocity in the adiabatic 
section and pipe diameter, did not exceed the limit 
beyond which turbulent flow might occur. ‘This 

relationships. For the present cases, the results on 
the basis of Poiseuille flow equations are obtained 
by extending the almost uniform pressure drop line 
in the adiabatic section from both sides to the middle 
points of evaporator and condenser sections. The 
effect of this vapor pressure drop on temperature 
variations along the heat pipe vapor-liquid interface 
is demonstrated in Fig. 3. The profiles are obtained 
from the vapor-liquid equilibrium relations for 

Table 1. Primary information on the sodium hquid metal heat pipe 
_ 

Run no. T., (K) 6, (KI H, (W me2 Km’) H‘,(Wm-’ Km’, Rep Re< 
.____~ _.~~_...~_~. ~~~ .~ _~ ~~ ~~ 

1 800 805 I7106 2851 2 1.33 
2 800 810 17106 285 1 4 2.66 
3 800 820 17106 2851 8 5.33 
4 800 830 17106 2851 24 16.00 
5 800 845 17106 2851 36 24Gil 

___ .-_. _.~ . -- - 

--.-___ 

To (K) p. W/m*) 

804 946 
808 1023 
816 1203 
824 1398 
836 1633 

-___-. 
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FIG. 2. Axial wall pressure drop along the heat pipe. 

FIG. 3. Axial wall temperature drop along the heat pipe. 

FIG. 4. Distribution of stream function on the heat pipe wall. 

FIG. 5. Axial temperature variation at various radial 
locations. 

sodium. The temperature distribution in each case is 
compared with the uniform temperature T, when the 
effects of the vapor pressure drop are neglected. A 
temperature drop of about 20°K is resulted in Run 
No. 5. The temperature recovery in condenser section 
in Runs No. 2-5 has also been observed in the ex- 
perimental measurements by Busse [4] of a liquid 
metal heat pipe. 

The effects of the temperature variation along the 
heat pipe on its performance is demonstrated in Fig. 
5 where the actual stream function variation along the 
heat pipe vapor-liquid interface is compared with 
the values expected when the effect of the vapor pres- 
sure drop is neglected. Because of the temperature 
drop, the maximum value of the stream function in 
the adiabatic section is lower than the expected 
uniform value in all cases. The results of this reduction 
in the maximum value of stream function is a reduc- 
tion in the overall heat transfer rate through the heat 
pipe as demonstrated in Table 2. 

Table 2. Comparison of the actual and expected values of Q 
and Re_ 

Run no. Q. (W Remax, n Q(w) Remax 

1 185 186 162 163 
2 370 372 289 292 
3 740 744 610 614 
4 1120 1126 906 911 
5 1665 1674 1265 1283 

Considering the axial temperature variations at the 
vapor-liquid interface as shown in Fig. 3, the elliptic 
energy conservation equation was solved simultan- 
eously with the stream function and vorticity equations 
by following the solution procedure already described. 
Figure 5 presents the axial temperature variations at 
various radial locations for Runs No. 3 and 5, while 
Figs. 6 and 7 show the radial temperature profiles at 
various axial locations for the same cases. These 
variations become Important when the amount of 
heat that is transferred by conduction between liquid 
and vapor becomes significant. Bankston and Smith 
[3] reported the axial velocity reversals close to the 
vapor-liquid interface at the end of condenser section 
for high evaporation and condensation rates. The 
flow reversal exists also in the present cases with non- 
uniform evaporation and condensation. The effect of 
this reversal on radial temperature variations can be 
seen by a comparison of temperature profiles close 
to the vapor-liquid interface in Runs No. 3 and 5 
(Figs. 6 and 7). 

HMT Vol. 17. No. I--E 
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FIG. 6. Radial temperature variation at various axial 
locations. 

, 

FIG. 7. Radial temperature variation at various axial 
locations. 

FIG. 8. Comparison of the elliptic and parabolic pressure 
drop results. 

The momentum and energy conservation equations 
of the boundary layer type were also solved for the 
problem of vapor flow by following the numerical 
solution method of Spalding and Patankar [7]. A 
successive approximation method was used for 
calculation of axial pressure drop along the heat pipe 
and the same method of the elliptic case was applied 

for correction of the starting pressure at the heat pipe 
evaporator end. The pressure drop results obtained 
from the solution of the two sets of parabolic and 
elliptic equations for Runs No. 3 and 5 are compared 
in Fig. 8. For the elliptic results, pressure drop is 

calculated by integration of the momentum equation 
and having the velocity profiles from the solution of 

stream function and vorticity equations. On the 
other hand for the parabolic results, at each section 

along the pipe. a uniform pressure drop is first 
calculated being mainly a function of the rate of 
condensation. This uniform pressure drop is then 
used for calculation of the velocity profile at that 
section from the parabolic momentum equation. If 
this velocity profile does not satisfy the continuity 

equation, a new pressure drop term is selected and a 
successive approximation procedure is followed so 

that a uniform pressure drop is finally calculated which 
yields a velocity profile that satisfies the continuity 

equation. Considering the radial variations of pressure 
at the heat pipe condenser end as demonstrated in 
Fig. 8 from the results of elliptic equations, one 
cannot expect to obtain accurate results for velocit) 
profile or axial pressure drop by using the same II /J ‘ds 
at all radial location in a section along the heat pipe. 
At higher evaporation and condensation rates the 

boundary layer equations result in velocity ant! 
temperature profiles that have several maxunum and 
minimum points and unstable pressure drop profile>. 
Run No. 5 
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ANALYSE DES EFFETS DE LA CHUTE DE PRESSION DE VAPEUR SUR LES 
PERFORMANCES D’UN CALODUC 

Rbom&--On prtsente une analyse des effets de la variation de pression de vapeur sur la distribution de 
temperature, les debits par evaporation et condensation et les performances globales du caloduc. Les 
equations elliptiques de conservation de masse, de quantite de mouvement et d’energie jointes a la relation 
d’&quilibre thermodynamique et aux conditions aux hmites appropriees sont resolues numeriquement pour 
un caloduc ~ljndriqne ayant un evaporateur, un tronc;on adia~tiq;Ic et un condenseur. Les r&mats 
mon trent que dam certains cas les variations de pression de vapeur jouent un r6le sensibledans le fonctionne- 
ment du caloduc. On montre aussi que la sofution approchee basQ sur les equations paraboliques de la 
couche limite ne donne pas une image correcte des variations de pression de vapeur aux debits relativement 

grands d’tvaporation et de condensation. 

DER EJNFLUSS DES DAMPF~RU~KABFALLS AUF DIE LEISTUNG 
EINES WARMEROHRES 

Zusammenfassung-Es handelt sich urn die Berechnung des Einflussa einer DampdruckPnderung auf die 
Temperaturverteihmg, die Verdampfungs- und Kondensationsrate und auf die Gesamtleistung eines 
WHrmerohres. Did elliptischen Massen-, Imp& und Eneraieerhaltunass&e in Verbindune mit der 
Beziehung fiir das thermodynamische Gieichgewicht turd g&ignete Ra~dbedingungen wurd& fiir ein 
zylindrisches Warmerohr mit Verdampfnngs- und Kondenstionsabschnitt- und adiabatem Zwis~henst~ck 
numerisch gel&t. Die Ergebnisse zeigen, dass die Anderung des Dampfdruckes in bestimmteu Situationen 
einen massgebhchen Einfluss auf die Leistung des Wlrmerohres hat. Weiter wurde gezeigt, dass die 
Nlherungsldsung auf Grund der parabolischen Grenzschichtgleichungen kein genaues Bild von Druck- 

Lnderungen bei hohen Verdampfungs- und Kondensationraten liefert. 

AWAJNi3 BJIHRHH~ HEPEHAfiA ~A~~EH~~ HAPA HA PEIKCMM 
PAFOTbI TEIUiOBbIX TPYIi 

AHaoTsqaJr-npencTasneH arrarma njlkrmrnf3 nepenana nanneaur3 napa ua pacnpeflenerrne 
TeMnepaTypbr napa, cuopocrb acnapemrfi u norr~errcanmr u na pexuhr pa6oTbr Tennoeoti 
Tpy6IJ. j&IR iJHJi~HJ&WieCKOft TeIIJIOBOri TpJ’6br C HCIlapHTeJIbHOii, ajQSa&lTElYeCKOi li 

KoH~e~c~p~~e~ ceK~~~~~ Y~~~eKKo peruewbr 3~~~~T~qOcK~e gpaBHemui coxpaKenM~ 

MaCCbl, KO~~YeCTBa ~~~~e~~~ M 3HefWMM BiMeCTe C COOTriO~eH~eM Tep~O~~Ha~~fYe~KOrO 

paBHOBf%llR EI COOTBeTCTByIOQHMtl FpaHWIHbIMkl yCJlOBHftMH. Pe3yJIbTaTbI liOKaSbIBaK)T, YTO 

npn 0npegeneHHbrx ~CJIOBHRX nepenaR RameHm napa ouasbrnaer cymecrnesaoe BnMRHne 

Ha pemm pa6oTbl TennoBoii TpyBbI. noKaaaa0 TaKme, YTo rrpa6mimenHoe peureane, OCHO- 

BbIB3Io~eeCRHa~apa6oJI~~eCK~XypaBHe~~~X~o~paH~YHO~OC~O~,He~aeTTOYHO~ KapTIlHbI 

I13MeHeHIIR AaBJIeHHR WApa IlpkI OTHOWTeJIbHO 6OnhurMix CKOpOCTRX HcnapeHurH II 

KOH~eHCa~~~. 


