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Abstract—An analysis of the effects of vapor pressure variation on the vapor temperature distribution,
evaporation and condensation rates, and the overall heat pipe performance is presented. The elliptic mass,
momentum and energy conservation equations in conjunction with the thermodynamic equilibrium
relation and appropriate boundary conditions are solved numerically for a cylindrical heat pipe with
evaporator, adiabatic and condenser sections. The results show that in certain situations vapor pressure
variations play a significant role in the heat pipe performance. It is also demonstrated that the approximate
solution based on the parabolic boundary-layer equations does not provide an accurate picture of vapor
pressure variations at relatively high evaporation and condensation rates.

NOMENCLATURE
Cp specific heat at constant pressure;
h, enthalpy, ¢ T;
h o heat of vaporization;
H, overall heat transfer coefficient;
L, length of the heat pipe,
D, pressure;
P, perimeter;
Q, overall heat transfer rate through the heat
pipe;
r, radial distance;
ro,  vapor space radius;
Re, radial Reynolds number, pr v,/u;
T, temperature;
T, initial operating vapor temperature;
u, axial velocity;
v, radial velocity;
v,  evaporation or condensation velocity;
X, axial distance;
I',, thermal exchange coefficent;
U, viscosity;
P density;
¥,  stream function;
w,  vorticity.
Subscripts
a, ambient;
c, condenser;
e, evaporator;

value on the boundary.

1. INTRODUCTION
ALONG the vapor-liquid interface inside a heat pipe
the vapor temperature is related to the pressure
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according to the equlibrium temperature-pressure
relation. Therefore, a large pressure drop in the vapor-
flow direction may result in a significant temperature
drop along the interface, thus affecting the overall
heat pipe performance. The pressure-drop effect
becomes more pronounced in a long heat pipe or in
cases where the operating vapor pressure is relatively
small, such as in liquid metal heat pipes. There have
been several recent investigations [1-4] to analyse
the effects of vapor flow, particularly the effect of
pressure variations, on the overall heat pipe per-
formance. These analyses were all based on mass
and momentum conservation equations and thus
neglected the complex coupling with the energy
equation and the thermodynamic equilibrium rela-
tion. Moreover, the boundary-layer approximation
was often employed [1,2,4] in a problem clearly of
elliptic type, and the validity of this approximation in
the case with appreciable vapor pressure drop has not
been assessed.

In the present paper the effects of vapor pressure
variation on the axial temperature distribution,
evaporation and condensation rates, and the overall
heat pipe performance are investigated analytically.
The theoretical framework is based on the elliptic
mass, momentum and energy conservation equations
as well as the thermodynamic equilibrium relations.
Results are obtained numerically for a cylindrical
heat pipe with evaporator, adiabatic, and condenser
sections. Several cases of heat pipe operation with
significant vapor pressure drop are considered. The
present findings are in general agreement with the
temperature measurements of Busse [4] on a liquid
metal heat pipe, and with the earlier approximate
calculations. The effects of radial pressure drop are
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also indicated by comparing with the boundary layer
calculations in which the radial pressure gradient is
neglected.

2. FUNDAMENTAL EQUATIONS

The physical model under consideration is a
cylindrical heat pipe with evaporator, adiabatic and
condenser sections, operating under the following
assumptions:

1. The steady flow of vapor is laminar and sub-
sonic.

2. The vapor has constant transport properties
and its density variations follow the prefect-gas law.

3. At the vapor-~liquid interface, the vapor is at its
equilibrium temperature corresponding to its pres-
sure. Elsewhere it is either superheated or subcooled
depending on the local temperature and pressure.
Evaporation and condensation take place only at the
vapor—liquid interface.

4. The evaporator and condenser are surrounded
by constant but different ambient temperatures and
are associated with uniform overall heat transfer
coefficients between the vapor-liquid interface and
the ambient. This assumption will have a magnifying
effect in demonstrating the effects of axial pressure
variations and consequent temperature distribution
along the vapor-liquid interface on the heat pipe
performance. In actual situations, the heat transfer
coefficient between the heat pipe and its ambient is a
complex function of the ambient and heat pipe wall
temperature, the dominant mode of heat transfer and
the material of the heat pipe wall and liquid wick
matrix as well as other parameters.

5. The effects of axial heat conduction through the
pipe wall and liquid wick matrix as well as the liquid
pressure drop in the wick are negligible. This assump-
tion is rather restrictive for many heat pipes [5] and
is imposed here primarily for the purpose of focusing
our attention on the complex transport phenomena
in the vapor region. The present numerical framework.
however, could incorporate these effects [5] in a
more extensive computational study.

Enclosure relations

The heat pipe 15 4 closed system such that at steady
state the mass of the vapor generated and the energy
transferred into the system in the evaporator section
must be equal to the mass of the vapor condensed and
the energy rejected out of the condenser section.
respectively. The energy enclosure condition gives
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where all symbols are defined in Nomenclature. For
given values of H, T, . H and T . T {x) must assumng
such an expression that the above integral conserva-
tion relation as well as the following differential
conservation equations are satisfied.

Governing difforential equations
For the numerical method of anaiysis | 5| emploved
in the study. it 15 more convenient to express the mass,
momentum and energy conservation cquations in
terms of stream function, vorticity and enthalpy-
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Boundary conditions

Boundary conditions for the above eguations are
specified in accordance with the requirements for the
boundary conditions of the clliptic differential equa-
tions, For heat pipe vapor space. in order to determine
the stream function, vorticity and temperature bound-
ary conditions, pressure distribution in the system
must be first prescribed. Initially. a uniform pressure
is selected by assuming the vapor at a constant
temperature 7, calculated from equation i1}

[HPT dx

foou ke {6y

¢ [HPdx

based on the vapor-liquid equilibrium relation. The
magnitude of pressure is adjusted during the cal-
culation procedure by a successive approximation
procedure i such it way that the system always
satisfies the energy balance relation.

Once a value of the pressure inside the heat pipe 15
designated, the temperature boundary condition on



Analysis of the effects of vapor pressure drop on heat pipe performance 63

the pipe wall is obtained from the vapor-liquid
equilibrium relation

T=T(p) ™

where the complicated T-p relationship will be
approximated with a linear relation at points close
to the operating pressure of the system. The minor
deviations in temperature values due to this approxi-
mation would have a minimal effect on the outcome
of the analysis. Other boundary conditions are at the
insulated heat pipe flat ends:

I =0 ®
0X| =01
and at the pipe centerline
oT
o - =0 ©)

The velocity components # and v at the boundary
must satisfy:
v(0,r) = v(L,r) = v(x,0) =0,

u0,r) = u(l,r) = u(x,r,) =0, %

The evaporation and condensation velocity, v, is
determined by writing the energy balance relation for
an axial element of the vapor-liquid interface and by

or ]/[ph,g]- (11

olrn ) = [H(To(x) —T)+ k%
The stream function, ¥, on the boundary is deter-
mined by integrating equations (5),

Y0, 1) = Y(L,r) = Y(x,0) =0

(10)

=0.
r=0

x (12)
Yix,ry) = — E]fpvoro dx.

Vorticity boundary conditions at the vapor-
liquid interface and on the heat pipe flat ends are
calculated by assuming that the vorticity is uniform
close to the boundary [3, 6]

W)

* T p
and a relation based on the assumption that vorticity
variations close to centerline are parabolic was used
for determination of w/r on the pipe axis.

(13)

3. SOLUTION PROCEDURE
Basically, the finite difference iterative method of
solution with the upwind method of differencing of
Gosman et al. [6] was employed in the present
analysis. In brief, the field under study is divided into

M rows and N columns, and row and column numbers
are assigned to the nodes of the grid that is formed.
Then, the three conservation equations are written
in algebraic difference form by using the upwind
method. Three sets of MN difference equations in the
general form of

¢i,j = Ci+1,j¢‘t+1,j + Ci—l.j¢i—1,j + Ci,j+1¢i,j+1
+ Ci‘j—l¢i,j—1 + Dij (14)

are obtained for the three differential conservation
equations. The Gauss—Seidel point iterative method
is used to solve the 3 M N algebraic equation.

The solution procedure for the simple heat pipe
system is in the following order:

1. Zero initial values of stream function and
vorticity are assumed for nodes inside the grid. Vapor
temperature is assumed constant and equal to T
from equation (6) at all nodes of the grid.

2. Velocity and stream function boundary condi-
tions are determined from equations (10)12), and
the set of difference equations for stream function is
solved.

3. With the new stream function values, vorticity
boundary conditions are determined, and the set of
difference equations for vorticity is solved.

4. From the new stream function values, velocity
components are calculated from equation (4) for
nodes inside the grid. By knowing the velocity field,
the pressure distribution along the vapor-liquid
interface is determined by integration of the momen-
tum equation (6). Pressure at the liquid—vapor inter-
face at the end of evaporator section, p,, is taken as
the datum pressure and does not change. With the
new pressure distribution, the temperature boundary
condition is determined from equations (7)+9), and
the set of difference equations for temperature is
solved.

5. Steps 2-4 are repeated, and in each subcycle of
iteration the maximum value of R & 38 defined below,
is calculated

N+1
R=1- a pual
The procedure is terminated when R » becomes less
than a small preassigned value (here taken as 0-001)
for all the dependent variables w, y and h.

The initial uniform distribution of T(x) is modified
in the course of calculation. In order to satisfy the
energy enclosure relation, equation (1), the average
value of temperature at the vapor-liquid interface
defined as

T, = [{ HPT (x)dx]/[[ HP dx]

(15)

(16)
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must be equal to 7, from equation (6). This is made
possible by calculating the pressure p,, related to T,;
from equation (7). Subtracting this pressure from the
datum pressure p’; and adding the results of subtrac-
tion to p¥ would constitute the new datum pressure
p¥* "' In the course of obtaining the results this
adjustment was made only after every N steps of
iteration. Also, the vapor density variation is taken

into consideration in this sequence.

4. RESULTS AND DISCUSSION

A cylindrical heat pipe with sodium as working
fluid was selected for the analysis. The pipe dimen-
sions were chosen close to the dimensions of an
experimental heat pipe operating in Berkeley (i.e.
L=06m,L, =02m, L = 03m and r = 0:0086 m).
The range of heat pipe operating temperature that
was studied is such that while the operating pressure
inside the system is low, the pressure drop along the
pipe is relatively large. The heat pipe evaporator and
condenser ambient temperatures and overall heat
transfer coefficients were assumed constant. Thus. by
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limiting Reynolds number was taken as 2100 while
occasionally laminar flows of much highe: Reynolds
numbers are encountered. Table 1 gives the primary
information on these cases. A 61 x 10 grid was used
for obtaining the results of the above-mentioned
cases. The computer time spent on CDC 6400 was
about 2 min for each case, and the density and pres-
sure correction was made after every 10 steps of
iteration.

In presenting the results, flow aspects of the
problem have been omitted because of its similarity
to the results reported by Bankston and Smith [3].
Figure 2 demonstrates the vapor pressure drop along
the heat pipe vapor-liquid interface for the Runs No.
{-5in Table |. The pressure drop profile in the adia-
batic scction s a straight hine similar to Poiscuille
flow results, while profiles in the evaporator and
condenser sections demonstrate the effects of the
pressure head absorbed or created by evaporation
or condensation. The overall pressure drop along the
heat pipe in all cases is very close to predictions of
Busse [1] and Cotter [2] for low evaporation and
condensation rates on the basis of Poiseuille flow
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FiG. 1. Schematic diagram of the heat pipe.

neglecting the vapor temperature variations duc to
its pressure drop, evaporation and condensation
rates must be uniform. Five cases of heat pipe opera-
tion with various evaporation and condensation
rates were studied. This range was selected in such a
way that the maximum vapor Reynolds number,
based on the average axial velocity in the adiabatic
section and pipe diameter, did not exceed the limit
beyond which turbulent flow might occur. This

relationships. For the present cases, the results on
the basis of Poiseuille flow equations are obtained
by extending the almost uniform pressure drop line
in the adiabatic section from both sides to the middie
points of evaporator and condenser sections. The
effect of this vapor pressure drop on temperature
variations along the heat pipe vapor-liquid interface
is demonstrated in Fig. 3. The profiles are obtained
from the vapor-liquid equilibrium relations for

Table 1. Primary information on the sodium liquid metal heat pipe

Runno. T,(K) T, (K) HWm K'Y H(MWm?>K' R, Re T,(K) p,(Nm?
1 800 803 17106 2851 2 133 804 946
2 800 810 17106 2851 4 266 808 1023
3 800 820 17106 2851 8 533 816 1203
4 800 830 17106 2851 24 1600 824 1398
5 800 845 17106 2851 36 2400 836 1633
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F1G. 2. Axial wall pressure drop along the heat pipe.
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F1G. 4. Distribution of stream function on the heat pipe wall.
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FiG. 5. Axial temperature variation at various radial
locations.
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sodium. The temperature distribution in each case is
compared with the uniform temperature T, when the
effects of the vapor pressure drop are neglected. A
temperature drop of about 20°K is resulted in Run
No. 5. The temperature recovery in condenser section
in Runs No. 2-5 has also been observed in the ex-
perimental measurements by Busse [4] of a liquid
metal heat pipe.

The effects of the temperature variation along the
heat pipe on its performance is demonstrated in Fig.
5 where the actual stream function variation along the
heat pipe vapor-liquid interface is compared with
the values expected when the effect of the vapor pres-
sure drop is neglected. Because of the temperature
drop, the maximum value of the stream function in
the adiabatic section is lower than the expected
uniform value in all cases. The results of this reduction
in the maximum value of stream function is a reduc-
tion in the overall heat transfer rate through the heat
pipe as demonstrated in Table 2.

Table 2. Comparison of the actual and expected values of Q

and Re
Run no. Q" (W) Remax. n Q (W) Remax
1 185 186 162 163
2 370 372 289 292
3 740 744 610 614
4 1120 1126 906 911
5 1665 1674 1265 1283

Considering the axial temperature variations at the
vapor-liquid interface as shown in Fig. 3, the elliptic
energy conservation equation was solved simultan-
eously with the stream function and vorticity equations
by following the solution procedure already described.
Figure S presents the axial temperature variations at
various radial locations for Runs No. 3 and 5, while
Figs. 6 and 7 show the radial temperature profiles at
various axial locations for the same cases. These
variations become important when the amount of
heat that is transferred by conduction between liquid
and vapor becomes significant. Bankston and Smith
[3] reported the axial velocity reversals close to the
vapor-liquid interface at the end of condenser section
for high evaporation and condensation rates. The
flow reversal exists also in the present cases with non-
uniform evaporation and condensation. The effect of
this reversal on radial temperature variations can be
seen by a comparison of temperature profiles close
to the vapor-liquid interface in Runs No. 3 and 5
(Figs. 6 and 7).
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Fic. 6. Radial temperature variation at
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FiG. 7. Radial temperature variation at various axial
locations.
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F1G. 8. Comparison of the elliptic and parabolic pressure
drop results.

The momentum and energy conservation equations
of the boundary layer type were also solved for the
problem of vapor flow by following the numerical
solution method of Spalding and Patankar [7] A
successive approximation method was used for
calculation of axial pressure drop along the heat pipe
and the same method of the elliptic case was applied

for correction of the starting pressure at the heal pipe
evaporator end. The pressure drop results obtained
from the solution of the two sets of parabolic and
elliptic equations for Runs No. 3 and § are compared
in Fig. 8 For the elliptic results, pressure drop is
calculated by integration of the momentum equation
and having the velocity profiles from the solution of
stream function and vorticity equations. On the
other hand for the parabolic results, at each section
along the pipe, a uniform pressure drop is first
calculated being mainly a function of the rate of
condensation. This uniform pressure drop is then
used for calculation of the velocity profile at that
section from the parabolic momentum equation. If
this velocity profile does not satisfy the continuity
equation, a new pressure drop term is selected and a
successive approximation procedure is followed so
that a uniform pressure drop is finally calculated which
yields a velocity profile that satisfies the continuity
equation. Considering the radial variations of pressure
at the heat pipe condenser end as demonsirated in
Fig. 8 from the results of elliptic equations, onc
cannot expect to obtain accurate results for velocity
profile or axial pressure drop by using the same Jp/dx
at all radial location in a section along the heat pipe.
At higher evaporation and condensation rates the
boundary layer equations result in velocity and
temperature profiles that have several maximum and
minimum points and unstable pressure drop profiles.
Run No. §.
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ANALYSE DES EFFETS DE LA CHUTE DE PRESSION DE VAPEUR SUR LES
PERFORMANCES D'UN CALODUC

Résnmé—On présente une analyse des effets de la variation de pression de vapeur sur la distribution de
température, les débits par évaporation et condensation et les performances globales du caloduc. Les
équations elliptiques de conservation de masse, de quantité de mouvement et d’énergie jointes a la relation
d’équilibre thermodynamique et aux conditions aux limites appropriées sont résolues numériquement pour
un caloduc cylindrique ayant un évaporateur, un trongon adiabatique et un condepseur. Les résultats
montrent que dans certains cas les variations de pression de vapeur jouent un rdle sensible dans le fonctionne-
ment du caloduc. On montre aussi que la solution approchée basée sur les équations paraboliques de la
couche limite ne donne pas une image correcte des variations de pression de vapeur aux débits relativement
grands d’évaporation et de condensation.

DER EINFLUSS DES DAMPFDRUCKABFALLS AUF DIE LEISTUNG
EINES WARMEROHRES

Zusammenfassung—Es handelt sich um die Berechnung des Einflusses einer Dampdruckinderung auf die
Temperaturverteilung, die Verdampfungs- und Kondensationsrate und auf die Gesamtleistung eines
Wirmerohres. Did elliptischen Massen-, Impuls- und Energieerhaltungssitze in Verbindung mit der
Bezichung fiir das thermodynamische Gleichgewicht und geeignete Randbedingungen wurden fiir ein
zylindrisches Wirmerohr mit Verdampfungs- und Kondenstionsabschnitt- und adiabatem Zwischenstiick
numerisch gelost. Die Ergebnisse zeigen, dass die Anderung des Dampfdruckes in bestimmten Situationen
einen massgeblichen Einfluss auf die Leistung des Warmerohres hat. Weiter wurde gezeigt, dass die
Néherungsiésung auf Grund der parabolischen Grenzschichtgleichungen kein genaues Bild von Druck-
dnderungen bei hohen Verdampfungs- und Kondensationraten liefert.

AHAJIN3 BJIUAHUA NEPENAJA JABJEHUA NNAPA HA PERUM
PABOTHI TEIIOBBIX TPVH

AmHoTanua—IIpencranien aanns BAMAHUA Iepenaja AABIEHHA Napad HA pPacHpefeseHde
TEMIIEPATYpHl Tapa, CKOPOCTL UCHAPEHMA W KOHNEHCALMHM M HA PeXRUM PafoThl TemmoBoit
TpyGu. JlnA ouamnppudeckolt TemumoBol TpyGH ¢ uCHapurenbuoil, amgmabatwdeckoin u
HOHJGHCHDIOME CEeRUMAMU UHCHEHHO DpeHIeHH JIIMATHYECKHWEe YPaBHEHHA COXDAHEHUA
MACCH, KOJNMYEeCTBA [ABHIKEHNA W DHeDIHH BMECTe ¢ COOTHOLIGHHEM TepMOMMHAMHYECKOTO
PaBHOBECHS M COOTBETCTBYIOILUMYU I'DAHUYHAIMU YCTOBHAMU, Pe3yabTaTsl NOKa3uIBAIOT, YTO
npy ONpefeaeHAHX YCIOBUAX Nepenaj NABJICHHA Iapa OKashBaeT CYHIECTBEHHOe BINAHME
Ha peruM paGoThl TemyoBei TpyOu. IToxasamo Tamke, U4TO MPUGIMKEHHOE pelIeHHe, OCHO-
BHIBAIOWEECA HA NapaloMieckiX yPAaBHEHUAX TOTPAHIYHOTO CJIOH, HE JAeT TOUHOH KAPTHHE
U3MEHEHNH J[aBJeHHA 1apa 0pU OTHOCHTEABHO GONBIIMX CKOPOCTHX WCHAPEHHA U
HKOHeHCALHN.
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